36,494 research outputs found

    Trapping with biased diffusion species

    Full text link
    We analyze a trapping reaction with a single penetrable trap, in a one dimensional lattice, where both species (particles and trap) are mobile and have a drift velocity. We obtain the density as seen from a reference system attached to the trap and from the laboratory frame. In addition we study the nearest neighbor distance to the trap. We exploit a stochastic model previously developed, and compare the results with numerical simulations, resulting in an excellent agreement.Comment: 6 pages, 7 Postscript figure

    Environmental changes in a Mediterranean river: implications for the fish assemblage

    Get PDF
    This study examined the impacts of climate change on hydrology and fish population dynamics in a river in central Spain. The objectives were to: (i) contextualise long-term trends in the hydrology (1943–2012) and climate (1985–2011) of the study area, and (ii) identify the environmental factors driving fish population dynamics (1998–2012). Air and water temperatures progressively increased over the study period, whereas there were substantial reductions in mean spring river discharges but increases in peak-flow discharges during the spawning and early larval period of endemic cyprinids in recent decades. In particular, the changes in spring river discharges could have fundamental implications for the future status of the endemic cyprinids because this study revealed a positive influence of stable and low flow conditions during the spawning and early larval period (in late spring) on recruitment success (young-of-the-year densities). The density of young-of-the-year Salmo trutta appeared most influenced by flow conditions during fry emergence and the early larval period (in early spring), with the highest densities associated with low peak-flow hydrological pulses. Overall, fish abundances were significantly influenced by the frequency and duration of high and low hydrological pulses, but there were interspecific and ontogenetic differences in their influence. We conclude that although it is widely accepted that global warming should favour cyprinid over salmonid species, future shifts in hydrology due to climate change could negatively affect some cyprinids, including endemic species

    Scattering theory of nonlinear thermoelectric transport

    Get PDF
    We investigate nonlinear transport properties of quantum conductors in response to both electrical and thermal driving forces. Within scattering approach, we determine the nonequilibrium screening potential of a generic mesoscopic system and find that its response is dictated by particle and entropic injectivities which describe the charge and entropy transfer during transport. We illustrate our model analyzing the voltage and thermal rectification of a resonant tunneling barrier. Importantly, we discuss interaction induced contributions to the thermopower in the presence of large temperature differences.Comment: 5 pages, 3 figures; slightly shortened version to fulfill the journal's requirement

    Measuring the transition to homogeneity with photometric redshift surveys

    Full text link
    We study the possibility of detecting the transition to homogeneity using photometric redshift catalogs. Our method is based on measuring the fractality of the projected galaxy distribution, using angular distances, and relies only on observable quantites. It thus provides a way to test the Cosmological Principle in a model-independent unbiased way. We have tested our method on different synthetic inhomogeneous catalogs, and shown that it is capable of discriminating some fractal models with relatively large fractal dimensions, in spite of the loss of information due to the radial projection. We have also studied the influence of the redshift bin width, photometric redshift errors, bias, non-linear clustering, and surveyed area, on the angular homogeneity index H2 ({\theta}) in a {\Lambda}CDM cosmology. The level to which an upcoming galaxy survey will be able to constrain the transition to homogeneity will depend mainly on the total surveyed area and the compactness of the surveyed region. In particular, a Dark Energy Survey (DES)-like survey should be able to easily discriminate certain fractal models with fractal dimensions as large as D2 = 2.95. We believe that this method will have relevant applications for upcoming large photometric redshift surveys, such as DES or the Large Synoptic Survey Telescope (LSST).Comment: 14 pages, 14 figure

    Interactions and star formation activity in Wolf-Rayet galaxies

    Full text link
    We present the main results of the PhD Thesis carried out by L\'opez-S\'anchez (2006), in which a detailed morphological, photometrical and spectroscopical analysis of a sample of 20 Wolf-Rayet (WR) galaxies was realized. The main aims are the study of the star formation and O and WR stellar populations in these galaxies and the role that interactions between low surface companion objects have in the triggering of the bursts. We analyze the morphology, stellar populations, physical conditions, chemical abundances and kinematics of the ionized gas, as well as the star-formation activity of each system.Comment: 16 pages, 15 figure

    Transport properties of armchair graphene nanoribbon junctions between graphene electrodes

    Full text link
    The transmission properties of armchair graphene nanoribbon junctions between graphene electrodes are investigated by means of first-principles quantum transport calculations. First the dependence of the transmission function on the size of the nanoribbon has been studied. Two regimes are highlighted: for small applied bias transport takes place via tunneling and the length of the ribbon is the key parameter that determines the junction conductance; at higher applied bias resonant transport through HOMO and LUMO starts to play a more determinant role, and the transport properties depend on the details of the geometry (width and length) of the carbon nanoribbon. In the case of the thinnest ribbon it has been verified that a tilted geometry of the central phenyl ring is the most stable configuration. As a consequence of this rotation the conductance decreases due to the misalignment of the pipi orbitals between the phenyl ring and the remaining part of the junction. All the computed transmission functions have shown a negligible dependence on different saturations and reconstructions of the edges of the graphene leads, suggesting a general validity of the reported results

    First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties

    Get PDF
    We present a theoretical study using density functional calculations of the structural, electronic and magnetic properties of 3d transition metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene. We pay special attention to the electronic and magnetic properties of these substitutional impurities and found that they can be fully understood using a simple model based on the hybridization between the states of the metal atom, particularly the d shell, and the defect levels associated with an unreconstructed D3h carbon vacancy. We identify three different regimes associated with the occupation of different carbon-metal hybridized electronic levels: (i) bonding states are completely filled for Sc and Ti, and these impurities are non-magnetic; (ii) the non-bonding d shell is partially occupied for V, Cr and Mn and, correspondingly, these impurties present large and localized spin moments; (iii) antibonding states with increasing carbon character are progressively filled for Co, Ni, the noble metals and Zn. The spin moments of these impurities oscillate between 0 and 1 Bohr magnetons and are increasingly delocalized. The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct position at the border between regimes (ii) and (iii) and shows a more complex behavior: while is non-magnetic at the level of GGA calculations, its spin moment can be switched on using GGA+U calculations with moderate values of the U parameter.Comment: 13 figures, 4 tables. Submitted to Phys. Rev. B on September 26th, 200
    corecore